The Earth is very old 41/2 billion years or more according to recent estimates. This vast span of time, called geologic time by earth scientists, is difficult to comprehend in the familiar time units of months and years, or even centuries. How then do scientists reckon geologic time, and why do they believe the Earth is so old? A great part of the secret of the Earth’s age is locked up in its rocks, and our centuries-old search for the key led to the beginning and nourished the growth of geologic science. Mankind’s speculations about the nature of the Earth inspired much of the lore and legend of early civilizations, but at times there were flashes of insight. The ancient historian Herodotus, in the 5th century B.C., made one of the earliest recorded geological observations. After finding fossil shells far inland in what are now parts of Egypt and Libya, he correctly inferred that the Mediterranean Sea had once extended much farther to the south. Few believed him, however, nor did the idea catch on. In the 3rd century B.C., Eratosthenes depicted a spherical Earth and even calculated its diameter and circumference, but the concept of a spherical Earth was beyond the imagination of most men. Only 500 years ago, sailors aboard the Santa Maria begged Columbus to turn back lest they sail off the Earth’s “edge.” Similar opinions and prejudices about the nature and age of the Earth have waxed and waned through the centuries. Most people, however, appear to have traditionally believed the Earth to be quite young that its age might be measured in terms of thousands of years, but certainly not in millions. The evidence for an ancient Earth is concealed in the rocks that form the Earth’s crust and surface. The rocks are not all the same age or even nearly so but, like the pages in a long and complicated history, they record the Earthshaping events and life of the past. The record, however, is incomplete.
Many pages, especially in the early parts, are missing and many others are tattered, torn, and difficult to decipher. But enough of the pages are preserved to reward the reader with accounts of astounding episodes which certify that the Earth is billions of years old. Two scales are used to date these episodes and to measure the age of the Earth: a relative time scale, based on the sequence of layering of the rocks and the evolution of life, and the radiometric time scale, based on the natural radioactivity of chemical elements in some of the rocks. An explanation of the relative scale highlights events in the growth of geologic science itself; the radiometric scale is a more recent development borrowed from the physical sciences and applied to geologic problems.
At the close of the 18th century, the haze of fantasy and mysticism that tended to obscure the true nature of the Earth was being swept away. Careful studies by scientists showed that rocks had diverse origins. Some rock layers, containing clearly identifiable fossil remains of fish and other forms of aquatic animal and plant life, originally formed in the ocean. Other layers, consisting of sand grains winnowed clean by the pounding surf, obviously formed as beach deposits that marked the shorelines of ancient seas. Certain layers are in the form of sand bars and gravel banks rock debris spread over the land by streams. Some rocks were once lava flows or beds of cinders and ash thrown out of ancient volcanoes; others are portions of large masses of oncemolten rock that cooled very slowly far beneath the Earth’s surface. Other rocks were so transformed by heat and pressure during the heaving and buckling of the Earth’s crust in periods of mountain building that their original features were obliterated. Between the years of 1785 and 1800, James Mutton and William Smith advanced the concept of geologic time and strengthened the belief in an ancient world. Mutton, a Scottish geologist, first proposed formally the fundamental principle used to classify rocks according to their relative ages. He concluded, after studying rocks at many outcrops, that each layer represented a specific interval of geologic time. Further, he proposed that wherever uncontorted layers were exposed, the bottom layer was deposited first and was, therefore, the oldest layer exposed; each succeeding layer, up to the topmost one, was progressively younger. Today, such a proposal appears to be quite elementary but, nearly 200 years ago, it amounted to a major breakthrough in scientific reasoning by establishing a rational basis for relative time measurements. However, unlike tree-ring dating in which each ring is a measure of 1 year’s growth no precise rate of deposition can be determined for most of the rock layers. Therefore, the actual length of geologic time represented by any given layer is usually unknown or, at best, a matter of opinion.






